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This paper describes the calculation of the added-mass and damping coefficients of 
a submerged toroidal body that is undergoing a forced, periodic heaving motion. The 
velocity potential of the motion is expressed as an infinite sum of toroidal multipole 
potentials, and the problem is solved in a manner analogous to Ursell’s classical 
solution for a submerged circular cylinder in two dimensions. When the torus is 
‘slender’, in the sense that its tubular radius is small compared with its overall 
diameter, relatively simple closed-form asymptotic approximations for the added- 
mass and damping coefficients are obtained. This work is motivated by the proposed 
RS-35 design of ring-hulled semisubmersible platform. 

1. Introduction 
The increasing needs of the offshore-oil industry for exploration, drilling and early 

production systems to work in the hostile environment north of the 62nd parallel in 
the North Sea has led to the development of a new type of semisubmersible platform, 
known as the RS-35 (see The Naval Architect 1980). The unique design concept of the 
RS-35 is of a uniform and well-balanced submerged toroidal ring-hull, which supports 
a working platform above the water line by means of four vertical columns. It is 
believed that this toroidal ring-hull design has excellent wave-response characteristics 
and will allow the search for oil and gas to proceed into deeper and rougher waters 
than has been previously possible. To give some idea of the scale of this structure, 
the ring-hull has an overall diameter of about 100 m, each tubular section has a 
diameter of about 10 m and the vertical supporting columns have a diameter of about 
12 m. In  its operational mode the ring-hull is submerged to a depth of about 20 m. 

It is clearly important to be able to predict the hydrodynamic characteristics of 
this type of vessel in the presence of waves. In  many problems involving a large body 
in an ocean, a realistic mathematical model can be achieved by assuming that the 
fluid is inviscid and incompressible and that its motion is irrotational. This leads to 
the classical description of the fluid motion in terms of a velocity potential that 
satisfies Laplace’s equation in the bulk of the fluid. When the wave amplitude is small 
compared with its wavelength, and to the dimensions of the body, it is also 
appropriate to adopt the linearized form of the free-surface boundary condition. In  
such a linearized theory, the response of a body to incident waves can be determined 
if we know the added-mass and damping coefficients associated with the forced 
motions of that body in the absence of waves (see e.g. Newman 1 9 7 7 ~ ) .  

From an engineering viewpoint, it is important to estimate the heave (vertical) 
motions of the semisubmersible platform due to the influence of ocean waves. This 
is because the drilling pipes employed in deep waters can be hundreds of metres in 
length, and so can withstand the small degree of flexure introduced by any surging 
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(horizontal) or rolling motions of the platform. However, the drilling pipe is largely 
inextensible, and can be damaged by any excessive heaving motion of the platform. 

I n  this paper we examine the problem of calculating the added-mass and damping 
coefficients of a submerged torus that is undergoing a forced, periodic heaving motion: 
the so-called ‘heave radiation problem ’. By introducing suitably chosen toroidal 
coordinates we will show that the associated boundary-value problems can be 
formulated and solved in a manner that is analogous to Ursell’s classical solution for 
the waves generated by a submerged circular cylinder in two dimensions (see Ursell 
1950). 

When the torus is ‘slender’, in the sense that the tubular radius is small compared 
with its overall diameter, we will obtain simple closed-form asymptotic approximations 
for the added-mass and damping coefficients. These approximations are relevant to  
the proposed RS-35 ring-hull design of semisubmersible. 

The author is not aware of any previous work in which the submerged-torus 
problem is treated by multipole methods. The case of a half-immersed slender torus 
has been discussed by Newman (1977 b) ,  who used a ‘ strip-theory ’ approach to derive 
approximations for the added-mass and damping coefficients. This strip-theory 
calculation is only appropriate at high frequencies. An alternative high-frequency 
approximation has been given by Davis (1975) for the case ofa general (i.e. non-slender) 
half-immersed torus. 

Finally, i t  should be noted that the general methods presented in this paper could 
also be used to  treat the non-axisymmetric modes of motion which have a cosme 
variation, where 8 is the azimuthal angle. 

2. Statement of the problem: definition of toroidal coordinates 
To fix ideas, let us consider the origin of cylindrical polar coordinates (r,  0, y) to  

be in the mean free surface of the fluid, with the y-axis vertical (y increasing with 
depth) and r , e  taken in the usual way. I n  these coordinates, the surface Y of the 
torus is given by 

9’: (r-c)2+(y-d)2 = b2, 0 < 0 < 2~ (0 < b < c;  d > b ) ,  (2.1) 

where the geometrical significance of b,  c and d is shown in figure 1. For obvious 
reasons, we will refer to d as the ‘depth of submergence’ of the torus, b as the 
‘tubular-radius’ of the torus and 2c as being the ‘overall diameter’. 

The surrounding fluid is assumed to be inviscid and incompressible and the motion 
is assumed to be irrotational. This leads to a description of its velocity field u(r, t )  
in terms of a velocity potential @(r,  t ) ,  where 

u = V@. 

Waves are generated in the fluid due to a forced, heaving, oscillatory motion of the 
torus, whose instantaneous (downward) velocity is U cos wt. The fluid is assumed to  
have attained a ‘steady state’ in which its variation with time is also harmonic, and 
we can write 

@(r,  t )  = Re {$(r) e-iwt}, 

where $(r )  is a complex-valued potential, to be determined. The equation of 
continuity in the bulk of the fluid is 

VZ$ = 0, (2.2) 
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FIGURE 1.  A cross-section through the submerged torus, showing the 
geometrical signficance of the parameters a, b, c, d. 

where V2 is the 3-dimensional Laplacian operator. We also assume that the fluid 
motion is small enough to allow us to use the linearized free-surface condition 

where K = w 2 / g  ( g  = acceleration due to gravity). The boundary condition at the 
surface of the torus is 

(2.4) 

The geometry of the problem is symmetrical about the y-axis, and so we expect that 
4 is independent of 8, i.e. 

We also need to specify conditions to be satisfied at infinity. Far from the body we 
expect that the potential 4 resembles that of a radially outgoing wave, and so we 
impose the radiation condition that 

_ -  ‘4- UY o n Y .  
an an 

4 = 4 ( Y , Y )  only. 

where A, measures the amplitude of the waves at infinity. We also demand that the 
fluid motion vanishes as y+ 00, i.e. 

V$+O a s y + a .  (2.6) 

The equations (2.2)-(2.6) d e h e  a boundary-value problem for the known potential 
4. To solve the problem, we proceed by defining toroidal coordinates (a, +, 8) about 
the circle V: r = a, y = d .  Suppose P is a point in space and A ,  B are opposite ends 
of a diameter of %? such that the plane APB contains the y-axis and B is closest to 
P. The coordinates (a, +, 8 )  are then given by 

(2.7) 
AP 
BP ’ 

u = ln- + = fApB for y 3 d ,  8 as before. 
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The surfaces u = const, $ = const, 8 = const are mutually orthogonal. In particular, 
the ‘level’ surface u = const describes the surface of a tows. This suggests that, by 
an appropriate choice of the value of a ,  Y can be made to coincide with a level surface 
of the toroidal-coordinate system. In fact, if a is chosen so that 

a = (c2--b2):, (2.8 ) 

then Y is described as the torus u = uo, where 

sinha, = ($- 1>”. 

We also note that the boundary condition (2.4) on 9 can now be written as 

_ -  aY 
an au 

- U -  o n ~ = ~ ~ .  

The relation between r ,  y and u, $ is 

(2.10) 

and the metric for this system is 

a 
ds2 = h2{du2 + d$-2 + sinha u d@}, h = 

cash u - COS $‘ 

Fundamental quasiseparated solutions of Laplace’s equation that are independent 
of 8 are of the form 

(2.11) 

(see Morse & Feshbach 1953, pp. 1301-1304). P,+ Q,-t are linearly independent 
solutions of Legendre’s equation (of degree n-2) of the first and second kinds 
respectively, their definitions being taken as those used by Erddyi et al. (1953, pp. 
120-181). Functions of the first kind are associated with potentials that are singular 
on the circle %(a = CO) but bounded on the axis (a = 0). Those of the second kind 
are associated with potentials bounded on %? but singular on the axis. (In the 
subsequent work i t  is useful to regard P,+(cosh u) as having a qualitative behaviour 
similar to that of e+n‘J, and Q,-t(cosh a) as behaving like ewnU, at least for n, u > 0.) 
Finally we note that when n is an integer (2.11) describes potentials that are 
single-valued about %. 

3. Toroidal multipole potentials 

We have seen that the surface Y of the torus can be expressed as the level surface 
u = uo in a suitably chosen system of toroidal coordinates. Thus the boundary-value 
problem for the torus as defined by (2.2)-(2.6) is analogous to the 2-dimensional 
problem for a submerged circular cylinder as solved by Ursell (1950), in which the 
potential is expressed as an infinite sum of cylindrical multipole potentials. The 
corresponding problem for a submerged sphere has been treated by Srokosz (1979). 

The purpose of this section is to construct multipole potentials in toroidal 
coordinates which are relevant to the problem of a submerged heaving torus. These 
toroidal multipole potentials individually satisfy the free-surface condition (2.3), the 
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conditions at infinity (2.5), (2.6) and also have the property that they are singular 
on the circle %(a = 00) which lies inside the torus. 

Fundamental solutions of Laplace's equation that are singular on V are of 
the form 

(cosha-cos$)i cosn@ Pn-t(cosh a), (3.la) 

(cosha-cos$): sin n@ Pn+(cosh a). (3.1 b)  

The key step in constructing toroidal multipole potentials is to derive integral 
representations of (3.1), of the form 

(cosh a - COB $)$ cos n$ P,-$cosh a) = a Cn(pU) e-plY-dl J o c u  r ) *, (3.2a) 

(cosh a-cos $)+ sinn$ Pn-t(cosha) = sgn (y-d) a S,(pU) e-plv-dl J&r) dp snm 
for n = 0,1,2,3, ... . (3.2b) 

The expressions on either side of (3.2) represent potentials that are symmetric about 
the axis r = 0 (a = 0). Thus to determine the unknown functions C,@) and &,(pa) 
it is sufficient to compare values on the axis of symmetry, i.e. 

(1 - cos $)i cos n$ = a Cn(,ua) e--lllY-dl dp, lorn (3 .3~)  

Let us consider just the fist of these, (3 .3~) .  On the axis we have, using (2.9), 

(3.3b) 

therefore 

a sin$ 
y - d  = = a cot?&; 

1-cos$ 

a 
I s i n w  = '[of 2+a a '  (3-4) 

n 

m-0 
Now (l-cos$)f cosn$ = dlsini$lcosn$ = dIsin+$I E ek sinBm;$, (3.5) 

where 
4n2[4n2 - 22] . . . [4n2 - (2m - 2)2] 

(2m)! 
€0" = 1, €k = ( -1)m 

(see Gradshteyn & Ryzhik 1980, p. 28). We can use this last result to rewrite ( 3 . 3 ~ )  
as 

Using the known result 

(see Watson 1944, p. 386), we deduce that the function C,(pa) is given by the-finite 

where the coefficients e z  are defined by (3.5). To determine the function &',(pa) we 
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treat (3.3b) in much the same way. The details of the analysis are very similar, and 
so we need only to state the final result: 

for n = 1 , 2 , 3 ,  ... . (3.7) 
We have now fully determined the functions C,(pu), S,(pu) which appear in the 
integral representations (3 .2) .  

By analogy with the work of Thorne (1953), we now construct toroidal multipole 
potentials $'," and $?) by writing 

$:) = (coshcr-cos$)i s inne  P,-&coshcr)+a fz)(p) e-p'Jo@r) dp. (3.8b) IoW 
The functions f(n')@), f;)(p) are chosen so that @, individually satisfy the 
free-surface condition (2.3). For example, using the integral representation ( 3 . 2 ~ )  it 
is easily verified that 

and so to satisfy the free-surface condition we require that 

By similar arguments we can show that 

We must also ensure that @, 4:) individually satisfy the radiation condition (2.5) 
for each value of n. This is achieved by the familiar device of indenting the contour 
of integration in (3.8) so as to run under the simple pole of the integrands, at  p = K. 
In fact, for this indented contour, it can be shown that 

4:) - ni(Ku) C,(Ka) e-K(u+d) HP)(Kr) + smaller terms, 

+(nl) - -7ci(Ku) S,(Ku) e-K(y+d) HP)(Kr) + smaller terms as r+  00. 

Let us now summarize the achievements of this section. We have constructed 

= (coshu-cosll,): cosnll, P , _ : ( c o s h u ) + u ~ p ~ K C , ( p u ) e - ~ ( ~ + d ) J , ( r r ) d p ,  

$:) = (cosh (T- cos $)& sin n$ P,-;(cosh u) -a f p$E~,(pu) e-p(g+d) Jo(pr) dp, 

(3.9b) 

where f denotes that the contour of integration runs under the simple pole of the 
integrands, at p = K. By construction, these multipole potentials individually satisfy 

toroidal multipole potentials q5:) in the forms 

0 P-K 
(3.9u) 
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the conditions at the free surface and at infinity, and also have the property that they 
are singular on the circle W :  r = a, y = d (a = a), which lies i m i d e  the torus. 

4. Mathematical solution of the potential problem 
By an argument similar to that used by Gregory (1967), it can be shown that the 

velocity potential $ may be written as an infinite sum of toroidal multipole potentials, 
viz r m  m 

By construction, this expression for $ satisfies Laplace’s equation in the fluid (2.2), 
the free-surface condition (2.3) and the conditions at infinity (2.5), (2.6). We now show 
that the coefficients {an, In}  can be chosen so that $ satisfies the remaining boundary 
condition, on the torus itself, which is most conveniently stated in the form 

(cosha,-cos$)t- a4 = U(cosha,-cos$)t- aY on a = a,, - A  < $ 6 A. (4.2) 
i3U aa 

Now 
m a sin$ 4 4 2  ?/ -d  = = a- (cosh v- cos $)t I: m sin m$ &,-!(cosh a) for a > 0 

cash u - cos $ It m-1 

(see Erdhlyi et a,?. 1953, p. 166, (3)). It follows that 

m sinh a, 
{(cosh a, - cos $)t m-l 

X m sin m$ &,+(cosh a,) 4 4 2  
A 

= Ua - (cosh (r, - cos $)t 

d 
m-1 d a  

CQ + (cosh a, - COB $)t X m sin m$ - Qm-t( cosh a) 

= Ua- d2 y m  sinm$, 
A m-1 

(4.3) 

where the coefficients {ym}  depend on U, and are given by 

and here we have employed the notation 

d 
4, = --&m_t(cosh a) , q: = f sinh a, Q,+(cosh a,) + coshao 4,. (4.5) 

u=u,J 

Thus the right-hand side of (4.2) can be expressed as a Fourier (sine) series in the 
angle $, over - A  < @ < A. Our next task is fo derive a similar Fourier expansion 
of the left-hand side of (4.2), since we can then equate corresponding coefficients of 
cos m$ and sin mllr, and hence obtain a system of equations involving the unknowns 

are given by (3.9~) 
and (3.9b) respectively. The integrals in these expressions define ‘image’ potentials 
which are regular in the half-space y > - d .  Thus they can be expanded as infinite 

{ a n ,  I n } *  
To proceed, we recall that the multipole potentials #:) and 
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series of toroidal harmonics which are regular around the circle W: r = a, y = d (i.e. 
u = a), which lies inside the torus, i.e. we can write 

4:) = (cosh u - cos $)i cos n$ P,a (  cosh u) { 
+ at &_i(cosh u) + X (a: cos m$ + b: sin m$) &,-t(cosh u) , (4.6~) 

m-i 1 
4g) = (cosh u- cos $)t sin n$ P,-i(cosh a) 

&-i(cosh a) + Z (c: cos m$ + d: sin m$) &,-t(cosh u) . (4.6 b )  
m-i 1 

Here the infinite series converge in the range u* < u < 00, where 

(4.6~) 

i.e. the series converge everywhere inside a toroidal annulus, ‘centred’ on the circle 
%?: r = a, y = d,  which extends up to the ‘image ’ circle %* : r = a ,  y = -d. In principle 
we can determine the coefficients {a: , b; , c: , dk} by considering the Fourier expansions 
of the integral in (4.5) over any fixed torus u = const (a* < u < a). By these means 
it can be shown that 

(4.74 

’ F$)(uo, $; Ka) 
sinm$d$, m =  0,1 ,2  ,..., (4.7b) 

(cosh uo - cos $)t 
bk = [7t Qm-i(cosh a,)]-’ 

where a$,, is the Kronecker delta function (=  1 if i = j and zero if i + j) and fl$) 
denotes the integral 

(4.8~) 

Equivalent expressions can be written down for the coefficients {c:, d:} in terms of 
the function Ft) (uo ,  $; Ka), which is given by the integral 

(4.8b) 

It is also clear that the coefficients {a:, b:, c;, d:} can only depend on the values of 
u*, Ka and Kd. 

Although it is possible to compute numerical approximations to the {a:, bk ,  ck, d:} 
by means of evaluating integrals like (4.7), this is a rather expensive procedure to 
implement, owing to the fact that the expressions for the F t ) , i  = 1,2,  themselves 
need to be evaluated using quadrature techniques over a range of values of Ka. 
Fortunately, we can derive simple analytical expressions for the ‘initial ’ coefficients 
{ah, bh, ch, dh} ,  and by using certain recurrence formulae it is possible to generate 
all of the ‘higher’ coefficients {a:, b:, (The details of this alternative 
method are outlined in the Appendix.) The use of these recurrence formulae is very 
efficient computationally, and gives a much higher accuracy than could be achieved 
by exploiting integral expressions like (4.7). Whichever method of evaluation is used, 
the important point is that the coefficients appearing in the expansions (4.5) can be 
considered as known. 
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We now use the expansions of &),@), given by (4.6), to evaluate the left-hand 
side of the boundary condition (4.2). After some manipulation, we can write the 
expression (cosh go- cos +)i (a$/au) Iu=uo as a Fourier series in the angle +, and if we 
then compare the coefficients of cos m+ and sin m+ with those appearing in (4.3) we 
see that to satisfy the boundary condition on the body the (unknown) coefficients 
{an, /3,} must satisfy an infinite system of linear equations, with constant coefficients. 
The details of the analysis are rather laborious, and so we will merely state the final 
result, that 

where 
M m n X n = C m ,  m =  1,2,3 ,..., (4.9) 

C, = C2 = C2,+, = 0, C2n+2 = y n  (known), n = 1,2,3, ... , (4.11) 

(4.12 a)  

(4.12b) 

(4.12d) 

(4.12 e )  I M2m+1,2n+1= - # m - 1 a k - l + q % a ~ - # m + l a k + l  

M2m+1, an+2 = -@m-l G - 1 +  9% bk -%m+1 b k + l ,  

M2m+2,2n+1 = - 9 m - 1  bk-i + q% bk - 3 m + 1  bk+19 

M2m+2,2n+2 = -~m-ldk- l+q%d~-%m+ldk+l ,  

+ ( - 9 m - 1  am-1, n +P% am, n-@m+l am+1, n ) ,  

( 4 . W )  1 + ( -@m-l  am-1, n +P% am,  n-@m+1 n )  

forrn=2,3,4 ,..., n = 0 , 1 , 2  ,.... 
In these equations we have used the expressions 4, and q: defined earlier, and also 
the analogous expressions $3, and p z  given by 

d 
$3m = - Pm-i(cosh u) , p ;  = ?j sinh u, Pm+(cosh a,) + cosh u, $3m. 

du u=uo 

In  principle, the infinite system of equations (4.9) can now be solved to give the 
values of the coefficients {an,pn}. In this way we have now constructed the exact 
solution to the problem, in the form of an expansion for 9 given by (4.1). In practice, 
of course, we can only solve finite systems of equations and hence obtain an 
approximation to the true solution - this procedure is now discussed in $5. 
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5. Calculation of the added-mass and damping coefficients A(&), B(Ka) 
In an engineering context, the important quantity to calculate for this 'heave- 

radiation' problem is the vertical force F exerted on the torus by the fluid. If the 
fluid motion is time-harmonic then so is F,  and i t  is convenient to write 

P = Re Cfe-'ot}, (5 .9  

where f is a complex-valued force coefficient. When presenting numerical results it 
is conventional to 'scale' the force with respect to the mass of the fluid displaced by 
the torus ( = p2x2u3 cosh ao/sinh3 go) and its maximum acceleration Uo, and we write 

cosh uo 
sinh3 uo 

f = -iUu3pw2x2- ( A  + iB). 

Here A is called the (dimensionless) 'added-mass coefficient ' and measures the 
component of the force F that is in phase with the acceleration of the torus; B is known 
as the (dimensionless) 'damping coefficient' and measures the component of the force 
in phase with the velocity. For a, given torus, at a fixed depth under the free 
surface, A and B are functions of Ku only. 

In a linear theory, the pressure p in the fluid, in excess of its hydrostatic value, 

a@ 
at 

is given by 
p = -p- = p Re{iwq5e-'"t}, 

and by integrating this pressure over the surface of the torus we have that 

torus 

Using (5.2) and (2.10) we deduce that 

A+iB = 

d$. (5.3) 
sin $ 

(cosh uo - cos $)3 
f f  q5(uo' = - (Uux)-l sech uo sinh5 uo 

We now use the expansion for q5, given by (4.1), and the results 

cos m$ sin $ 
d$ = 0 (integrand is an odd function of $), 

cash u0 - cos $)g 

to replace the integral in (5.3) by an infinite series,t and it can be verified that 
t In (ii) we have used the identity 

(see Erdelyi et al. 1953, p. 166, (3)). 
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and the related functions ji,, tj', have been defined previously. 
In  principle, the {a,,/3,} are found by solving the infinite system of linear 

equations (4.9). In practice, however, we can only solve finite systems of equations, 
and for the purpose of computation it is natural to truncate (4.9) to a 
(2N + 2 )  x (2N + 2) system and hence attempt to calculate approximations to  the finite 
set of coefficients {a,, p,}, 0 < m < N .  These are then used to give approximations 
to the added-mass and damping coefficients A and B by truncating the infinite series 
in (5.4) after the first N terms. (An obvious check on the validity of this procedure 
is to choose successively larger values of N and verify that the corresponding values 
for A and B converge to definite limits.) Computational experience shows that the 
value of N that should be chosen so as to achieve a certain accuracy depends very 
strongly on uo (i.e. the geometry of the torus) and to a lesser extent on the value of 
Ka. More specifically, as no increases (i.e. the torus becomes 'slender '), N decreases, 
for a fixed value of Ka. 
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FIQURE 3. The added-mass and damping coefficients of a submerged ‘slender’ torus for which 
b = 5.3 m, c = 44.7 m, d = 20 m (giving u = 44.4 m, uo = 2.82). 

In this paper we present numerical results for two different toroidal geometries. 
Figure 2 shows the graphs of A and B for a torus that has clb = t ,  bld = 2 (giving 
cro = cosh-’$ = 0.962 ...). For this configuration the choice N = 15 appears to 
produce values for A and B that have an absolute accuracy x f over the range 
0 < Ku < 5. (We recall that a = (c2 - b2)1.) By comparison, figure 3 shows the results 
for a torus that has b = 5.3 m, c = 44.7 m, d = 20 m (giving a = 44.4 m, no = 2.82); 
these are the appropriate values for the proposed RS-35 design of semisubmersible 
platform, working at its operational depth. It is clear that this torus is ‘slender’ in 
the sense that the aspect ratio b/2c is much less than unity. For this case, taking N = 8 
was sufficient to produce results with an absolute accuracy x f 

Comparing figures 2 and 3, it is clear that the results for a slender torus have a 
different character than those for a non-slender torus. In  particular, the author’s 
computations suggest that the damping coefficients of slender tori very nearly vanish 
in the neighbourhood of the points Ka = 2.4,5.5, 8.7, 11.8 etc.t In $6 we discuss the 

t Those familiar with the properties of Bessel functions will notice that these values of Ka lie 
suspiciously close to the first few zeroes of Jo(Ku).  In fact, it was this observation which prompted 
the detailed asymptotic analysis presented in $6. 
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asymptotic solution of (4.9), in the limit b/2c+O (i.e. e-ao-+O), and show that it is 
possible to obtain good closed-form approximations for the added-mass and damping 
coefficients of slender tori. 

6. The asymptotic form of the added-mass and damping coefficients of 
slender tori 

its 'overall diameter', then from (2 .1)  we have that 
If the torus is slender, in the sense that its 'tubular radius' is small compared with 

We recall that in our chosen system of toroidal coordinates {u, I++, O} the surface of 
the torus is given by u = u,, where 

sinhu, = [$- 1 7 ,  

b 
as -+O.  

b 
2c 2c 

and it is easily verified that 
e-ob N - 

Thus, to investigate the hydrodynamic characteristics of slender tori in waves, it is 
natural to consider the asymptotic solution of the linear equations (4.9) in the limit 
e-"o+O. We will now demonstrate that this approach leads to good closed-form 
approximations to the added-mass and damping coefficients of a slender torus. When 
using these approximations it is important to note that u, need not be very large in 
order that e-"o 4 1 : For example, the RS-35 design of semisubmersible has b/2c x if, 
giving u, x 2.82 and e-'o = 0.06. 

The principal step in the analysis is to modify the system of equations (4.9) in such 
a way that the matrix becomes strongly diagonally dominant as e-'o+O. To do this 
we first note that as e-uo + 0 

(6 .3a)  

(see Olver 1974, pp. 16S185). Using these results it is possible to calculate the 
asymptotic form of the quantities c j m ,  qz,  $m, p z  and y m  (and hence Mmn, C,) which 
appear in $4. The details of this asymptotic analysis are easily obtained, but too 
numerous to present, and so we will confine our attention to the important points: 
The quantities c j m ,  qz ,  ym become exponentially small as eVuo+O, whereas those in 
$im, p z  become exponentially large. More specifically, 
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as e-'o + O ,  at least for m > 0. These results can now be used to deduce the asymptotic 
nature of the matrix coefficients Mmn,  as defined in (4.12), and the 'right-hand sides' 
C,, given by (4.11). I n  this way we find that, for the infinite system of equations 

as e-"o + 0 the matrix M develops a definite banded structure in which the elements 
contained in the five diagonals nearest t o  the leading diagonal are asymptotically 
dominant over the other elements of the matrix. Unfortunately, the asymptotic 
structure of the matrix M is still sufficiently complicated to prevent us from reaching 
any useful conclusions about the properties of the solution vector X as e-"o -to. 

The next step in the asymptotic analysis is to exploit the fact that  X i s  defined 
by (4.19) to  be the vector 

and we recall that the {un,Bn} are the unknown Coefficients appearing in the 
infinite-series representation of the potential q5, given by (4.1). Now, by an  argument 
analogous to that used by Gregory (1967), i t  can be established that these infinite 
series must converge when u = uo, that is, on the surface of the torus. It follows that 

a, P,-t(cosh go) ,  /3, P,-;(cosh u,) + O  as n+ 00, 

and we deduce thai; the {a,, p,} become exponentially small as n + 00. This suggests 
that we should 'rescale' the solution vector X by writing 

x= (a,,O,a,,P,,az,B,, ... It, 

x* = (ao P-$cosh u,), 0, a1 %(cash u,), P,P;(cpsh go), aZ q(cosh go) ,  P2 q(eosh go) ,  . . .)t, 
(6.4) 

where we still have that X,* + O  as n + 00. This rescaled vector X* satisfies the infinite 

(6.5) 
system of equations MZ,X,* = Cm, 

where the matrix elements M Z n  are given by 

If we now examine the asymptotic form of the matrix M* as e-"o+O we find that 
the leading diagonal contains elements of order e"0 while all of the other elements 
are 0(1) or less. If we apply a further transformation, to normalize the elements on 
the leading diagonal, we obtain a final system of equations in the form 

[ /+A]X*  = c*, (6.7) 

(6.8) c: = c* = c* Y n  
P n  

2 2n+2 = 0, C&+, = 5Pn-;(coshu,), n = 1,2,3,  ... . 

Here / is the (infinite) identity matrix and A is an  (infinite) matrix in which every 
element is O(e-"O) or less. I n  the limit e-"o+O we expect that  the asymptotic solution 
of (6.7) takes the form 

(6.9) 

Using the relations (6.4)' (6.8), (6.9) and the asymptotic results (6.3), we can now 
deduce the asymptotic form of the coefficients {an,Pn} as e-'o+O. I n  fact, a careful 
analysis reveals that 

X* * [ I -A+A2-A ' . ..I C*. 
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where d: is a complex-valued coefficient first introduced in (4.6b). The asymptotic 
results given above can now be used, in conjunction with (5.4)' to produce an 
asymptotic estimate for the damping coefficient B(Ka). The dominant terms in the 
infinite series for B(Ka) are those involving PI, and using (5.4) it can be verified that 

(6.11) B(Ka) - in2 Im (d:) e-2"~ + o(e-3uo) as e-"o + 0. 

Now Im (d:) = -4(Ka) Im (c:) 

=- 4 4 2 ( K a 2 )  Imf ~ e - 2 Y d S O ( v a ) J o ( u a )  du 
x U - K  

= 8 4 2  ( K u ) ~  e-2kd So(Ka) Jo(Ka) 

= 3 2 ( K ~ ) ~  e-2kd {Jo(Ka)}2,  

where we have used the relations given in the Appendix and the expression for So(Ka) 
given by (3.7). Hence it follows from (6.11) that the damping coefficient for a slender 
torus has the asymptotic form 

B(Ka) - [16n2e-2uo] ( K c c ) ~  e-2Ka(dla) { J , ( K U ) } ~ + O ( ~ - ~ ~ ~ )  as e-"o-+O. (6.12) 

It is also possible to use (5.4)' (6.10) to produce an asymptotic estimate for the 
added mass A(&) of a slender torus, and to leading order we find that 

A(&) = 1 +O(e-2uo) as e-'o+O. 

In principle it is possible to obtain the next term in this asymptotic expansion of 
A(Ka),  but this would involve a very long and intricate calculation. A more pragmatic 
approach is to employ the so-called ' Kramers-Kronig relations', as discussed by 
Kotik 6 Mangulis (1962). In  the present notation the Kramers-Kronig relations take 
the form 

A(Ka)-A(0)  = - 
z( z - Ka) ' ( 6 . 1 3 ~ )  

(6.13b) 

where f denotes the Cauchy principal-value integral. If we replace the term B(z) in 
the relation ( 6 . 1 3 ~ )  by the first term in its asymptotic expansion as e-"o+O, given 
by (6.12), we find that 

dz 
A(&) - A ( 0 )  + [ 1671 e-2uo] Ka f." z2 e-2z(dla) P ( z )  - + O(e-3uo). (6.14) 

O z-Ka 

This last result can be interpreted in the following way. If we know the value of the 
added mass of a slender torus at zero frequency (i.e. Ka = 0) then (6.14) gives an 
approximation to the added mass A(Ka) at all other frequencies (i.e. 0 < Ka < ao). 

In practice the asymptotic results (6.12), (6.14) have been found to give excellent 
approximations to the values of the added-mass and damping coefficients of slender 
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FIGURE 4. A comparison of the computed results for a 'slender' torus with those predicted b) the 
asymptotic theory as e-'o+O: 0 ,  previously computed values (as shown in figure 3); -, asymptotic 
approximations given by (6.12), (6.14). 

tori that are sufficiently well submerged.t For example, figure 4 compares the 
closed-form approximations to  A(Ku), B(Ku) with the 'exact' values for the RS-35 
slender torus presented at the end of $5.  The asymptotic form of B(Ku), given by 
(6.12), suggests that the damping coefficient of a slender torus takes values very close 
to zero whenever the value of JJKu)  is close to zero, i.e. Ku x 2.4, 5.5, 8.7 etc., and 
this is clearly illustrated in figure 4. 

t It is possible to quantify this statement about the necessary depth of submergence. A more 
detailed investigation of the matrix elements M,,,, in (4.9) reveals that the asymptotic arguments 
presented in $6 are more accurately based on the assumption that e-('o-O*) -4 1, where CT* is a 
parameter depending on the depth, and is given by (4.6b). Now 

and so for our asymptotic results to apply we must have b/2c  -4 1 and that [l +ae/d2]i i s  not large. 
Physically, this means that the depth of submergence should not be very small when compared 
with the overall diameter of the torus. 
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Finally, it should be noted that the asymptotic results obtained for a slender torus 
can be derived by an alternative method in which the dominant part of the velocity 
potential is related to a ring-dipole whose moment is derived by analogy with the 
problem of a circular cylinder in two dimensions. In this way the integral in (6.14) 
and the corresponding ‘residue’ term of (6.12) are associated with the free-surface 
contribution to the expression for a submerged vertically aligned dipole, after the 
necessary circular integration. 

7. Discussion 
A simple application of Green’s theorem to the boundary-value problem stated 

in $2 shows that the amplitude of the waves radiated to infinity by the heaving torus 
is reIated to [B(Ka)l.f, the square root of its damping coefficient (see Newman 1962). 
Thus for a slender torus the results of $6  suggest that the wave amplitude at infinity 
tends to vanish around each discrete frequency for which Jo(Ka) = 0. 

The general methods described in this paper could also be used to treat the 
physically distinct, but mathematically similar, problem of the diffraction of a train 
of plane waves by a fixed submerged torus. Since the torus has a vertical axis of 
symmetry the formulation of this diffraction problem is the same as that for a general 
body of revolution, as discussed by Hulme (1983) and others. 

From an engineering viewpoint, an important quantity to calculate for the 
diffraction problem is F, the magnitude of the net vertical component of the 
(time-harmonic) wave-induced force exerted on a fixed, submerged torus. Now F can 
be derived from B(Ku), the damping coefficient in the corresponding heave-radiation 
problem, by using the ‘Haskind relations’ discussed by Newman (1962). We find that 

where A is the amplitude of the incident plane waves. For a torus that is slender, 
in the sense that b/2c -4 1, we can replace B(Ku) by the first term in its asymptotic 
expansion as eva0+O, given by (6.12), and we deduce that 

I F I = (Aa2pg) (16n2e-2uo) Ka e-Ka(dla) I J,(Ka) I + O(e-Su~) as e-“o+O. 

Thus we see that the net vertical force on a fixed slender torus in waves tends to vanish 
around the discrete set of frequencies for which Jo(Ka) = 0. This property may be 
of some importance in regard to the future design of ring-hulled semisubmersible 
platforms. 

I am grateful to Dr P. A. Martin for his help in deriving the integral representations 
presented in $ 3, and also to Dr P. Sayer for bringing this problem to my attention. 
Also, I am indebted to the referees for their valuable comments and suggestions. 

Appendix 
Let us consider the expansion of the ‘image’ potential 

af FECn(va) e-”(u+d)Jo(vr) dv (= xn, say). 

This potential is regular about the circle V: r = a , y  = d ,  and so has an expansion, 
in toroidal coordinates {a, $, 0)  defined about W, of the form 
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1 Q, + E (a& cosm$+b$ sinm$) &,-:(coshr) . (A 1) 

Our aim now is to  determine the coefficients {ak,bk} appearing in this expansion. 
Some of the early coefficients are easily obtained. Following a method described by 
Hulme (1981), in which we take the formal limits U + W  on both sides of (A l ) ,  we 

m-1 

find that 
a , -  - d2 ’+ e-2vd C,( ua) Jo( ua) du. 

Similarly, if we set y = d in (A I), and then take the d/dr derivative of both sides, 
in the limit u-+ 00 we find that 

a; = 2@--  4 6 2 a 2 ~ ~ e - 2 u d C n ( y a ) J 1 ( u u )  x V - K  du 

(again see Hulme 1981). The integrals in (A 2 ) ,  (A 3 )  can successfully be evaluated 
using numerical quadrature, providing that d l a  is not too small. 

The fundamental step in determining the {a:, b g }  is to exploit the fact that 

Let us, for the moment, assume that we know the expansion coefficients {Ek,q&} 
associated with the integral in (A 4), viz. 

a lom e-’(y+d) Cn(ua) Jo(ur) du = (cosh U- cos $): 6: &-:(cosh U) { 
Q, 

+ (6; cos m$ + 7: sin m$) Qm-t(CoSh @}. (A 5 )  

If we apply the operator K+a/ay  to both sides of (A 1) and use (A 4), (A 5 )  i t  can 
be established that 

m-1 

2 ( K ~ ) a ~ + ( m - ~ ) b ~ - ~ - 2 m b ~ + ( m + ? j ) b ~ , ~  

= 2/2 { - 2( Ka) 6; + (m -;) ykP1 - 2myk + (m +*) qZtl}, x 

2 ( K u ) b ~ - ( m - ~ ) a ~ - , + 2 m a ~ -  (m+;)ak,, 

= - -2(Ka) qk - ( m - ; )  6zPl + 2mc& - (m+&) 

+d2 

d2{  x 
for m 2 2 ,  together with 

2(Ka) a: - 2b: + 9; = - { - 2(Ka) 5: - 27: + tl/:}, x 

2(Ka)b:-a,n+2a:-+3; = x 
2(Ku)a,n+:b: = -{ + 4 2  - 2 ( K a ) c + 2 1 : }  

x 
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(the proof of this result uses the same general techniques as described previously by 
Hulme (1981). 

The relations (A 6) together with the 'initial values' given by (A 3) define a set of 
recurrence formulae which completely determine the coefficients {a:, bk}. The 
expansion of the integral 

can be treated in an analogous manner. 
Our next task is actually to determine the coefficients {Ek,r&} appearing in the 

expressions (A 5) ,  (A 6). From (3.6) we see that C,(vu) = 1/2J0(va), and so for n = 0 
the integral in (A 5) represents the potential due to a uniform distribution of sources 
around the 'image' circle %?*: r = a, y = -d. The expansion of this ring-source 
potential about the circle V: r = a, y = d has been derived by Hulme (1981), and 
we have that 

4 2  a s," 'e-'(y+d) C,(va) J,( vr) dv = - (cosh a - cos $)i (cosh a* - cos $*)t x 

(a* < a < a), (A 7 )  

where {a*, $*} relate to the position of the image circle V* and are given by 
U 

$*=tan-'- 
d' 

Thus 6; = e,(cosh a* - cos $*)t cos m$* P,-i(cosh a*), 

rk = e,(cosh a* - cos $*)* sin m* P,-i(cosh a*), 

where E ,  is Neuman's factor. Now, from (3.6), 

C,(va) = 1/2J0(va)-2 4 2  (va)J,(va), 

and we notice that 

Hence to determine the coefficients {fh,  vh}, we apply the operator 2a a/aa- 1 to both 
sides of (A 7), and after some manipulation we find that 

5; = - (m +i) + ( m - i )  E L l  + 2 a z ,  
(m 2 2), 

r:, = - (m+i )  vOm+1+ (m-i)  rL1+ 2 a a a  
and 

where here the derivatives 2aa&/aa, 2aapm/aa can be found in closed form as 
functions of a* and $*. In  a very similar manner, it is possible to derive 3-term 
recursion formulae that generate the remaining coefficients { E i ,  qk},  n 2 2, m 2 0, by 
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successive application of the operator 2aa/ay to both sides of (A 5 ) ,  followed by a 
suitable rearrangement of the terms. The details of this calculation are left aa an 
exercise for the reader. 
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